Thermal Analysis on Heat Transfer Enhancement and Fluid Flow for Al2O3 Water-Ethylene Glycol Nanofluid in Single PEMFC Mini Channel
نویسنده
چکیده
Thermal enhancement of a single mini channel in Proton Exchange Membrane Fuel Cell (PEMFC) cooling plate is numerically investigated. In this study, low concentration of Al2O3 in Water Ethylene Glycol mixtures is used as coolant in single channel of carbon graphite plate to mimic the mini channels in PEMFC cooling plate. A steady and incompressible flow with constant heat flux is assumed in the channel of 1mm x 5mm x 100mm. Nano particle of Al2O3 used ranges from 0.1, 0.3 and 0.5 vol % concentration and then dispersed in 60:40 (water: Ethylene Glycol) mixture. The effect of different flow rates to fluid flow and heat transfer enhancement in Re number range of 20 to 140 was observed. The result showed that heat transfer coefficient was improved by 18.11%, 9.86% and 5.37% for 0.5, 0.3 and 0.1 vol. % Al2O3 in 60:40 (water: EG) as compared to base fluid of 60:40 (water: EG). It is also showed that the higher vol. % concentration of Al2O3 performed better in term of thermal enhancement but at the expense of higher pumping power required due to increase in pressure drop experienced. Maximum additional pumping power of 0.0012W was required for 0.5 vol % Al2O3 in 60:40 (water: EG) at Re number 140. Keywords—Heat transfer, mini channel, nanofluid, PEMFC.
منابع مشابه
Thermal performance enhancement of automobile radiator using water-CuO nanofluid: an experimental study
In the present paper, the effect of water-CuO nanofluid on the radiator heat transfer of an automobile, Peugeot 405 XU7 engine type is investigated experimentally. The experiments are carried out for the radiator water (water-ethylene glycol with a volume fraction of 80-20, respectively) as a base fluid and water-CuO nanofluid with the volume fraction of 0.5% and 1%. Sodium Dodecyl Sulfate (SDS...
متن کاملEnhancement in energy and exergy efficiency of a solar receiver using suspended alumina nanparticles (nanofluid) as heat transfer fluid
An experimental and theoretical energy and exergy analysis was conducted for a cylindrical cavity receiver employed in a parabolic dish collector. Based on simultaneous energy and exergy analysis, the receiver average wall temperature and overall heat transfer coefficient were determined. A simplified Nusselt number for Heat Transfer Fluid (HTF) through the receiver as a function of Reynolds an...
متن کاملNumerical study on convective heat transfer for water-based alumina nanofluids
The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...
متن کاملNumerical study on convective heat transfer for water-based alumina nanofluids
The present work is an experimental study of steady state convective heat transfer of de-ionized water with a (0.04% by volume) volume fraction of Al2O3 nanoparticles dispersed to form a nanofluid that flows through an aluminium tube.Laminar fully developed flow heat transfer coefficient of Al2O3 nanoparticles are dispersed in water in circular tube is discussed in this paper. In order to valid...
متن کاملComputer-Aided Simulation of Heat Transfer in Nanofluids
Numerical simulation and experimental investigation were used for study of laminar forced convective heat transfer of Al2O3/water nanofluid. Single phase model with temperaturedependent properties was employed for numerical simulation of transport phenomena in nanofluid. The results of experiments and computer-aided simulation indicated remarkable enhancement of convective heat transfer of base...
متن کامل